MATH 252 Reference Sheet (in your ebook also under: Reference Pages): differentiation rules

General Formulas

1. $\frac{d}{d x}(c)=0$
2. $\frac{d}{d x}[c f(x)]=c f^{\prime}(x)$
3. $\frac{d}{d x}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x)$
4. $\frac{d}{d x}[f(x)-g(x)]=f^{\prime}(x)-g^{\prime}(x)$
5. $\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x) \quad$ (Product Rule)
6. $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) f^{\prime}(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}} \quad$ (Quotient Rule)
7. $\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x) \quad$ (Chain Rule)
8. $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \quad$ (Power Rule)

Exponential and Logarithmic Functions

9. $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
10. $\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a$
11. $\frac{d}{d x} \ln |x|=\frac{1}{x}$
12. $\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a}$

Trigonometric Functions
13. $\frac{d}{d x}(\sin x)=\cos x$
14. $\frac{d}{d x}(\cos x)=-\sin x$
15. $\frac{d}{d x}(\tan x)=\sec ^{2} x$
16. $\frac{d}{d x}(\csc x)=-\csc x \cot x$
17. $\frac{d}{d x}(\sec x)=\sec x \tan x$
18. $\frac{d}{d x}(\cot x)=-\csc ^{2} x$

Inverse Trigonometric Functions
19. $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$
20. $\frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}}$
21. $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$
22. $\frac{d}{d x}\left(\csc ^{-1} x\right)=-\frac{1}{x \sqrt{x^{2}-1}}$
23. $\frac{d}{d x}\left(\sec ^{-1} x\right)=\frac{1}{x \sqrt{x^{2}-1}}$
24. $\frac{d}{d x}\left(\cot ^{-1} x\right)=-\frac{1}{1+x^{2}}$

SPECIAL FUNCTIONS

Exponential and Logarithmic Functions
$\log _{a} x=y \quad \Leftrightarrow \quad a^{y}=x$
$\ln x=\log _{e} x, \quad$ where $\quad \ln e=1$
$\ln x=y \Leftrightarrow e^{y}=x$

Cancellation Equations
$\log _{a}\left(a^{x}\right)=x \quad a^{\log _{a} x}=x$
$\ln \left(e^{x}\right)=x \quad e^{\ln x}=x$

Laws of Logarithms

1. $\log _{a}(x y)=\log _{a} x+\log _{a} y$
2. $\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} y$
3. $\log _{a}\left(x^{r}\right)=r \log _{a} x$

$$
\lim _{x \rightarrow-\infty} e^{x}=0 \quad \lim _{x \rightarrow \infty} e^{x}=\infty
$$

$$
\lim _{x \rightarrow 0^{+}} \ln x=-\infty \quad \lim _{x \rightarrow \infty} \ln x=\infty
$$

Angle Measurement

π radians $=180^{\circ}$
$1^{\circ}=\frac{\pi}{180} \mathrm{rad} \quad 1 \mathrm{rad}=\frac{180^{\circ}}{\pi}$
$s=r \theta$
(θ in radians)

Right Angle Trigonometry

$\sin \theta=\frac{\mathrm{opp}}{\text { hyp }} \quad \csc \theta=\frac{\text { hyp }}{\text { opp }}$
$\cos \theta=\frac{\text { adj }}{\text { hyp }} \quad \sec \theta=\frac{\text { hyp }}{\text { adj }}$
$\tan \theta=\frac{\mathrm{opp}}{\text { adj }} \quad \cot \theta=\frac{\text { adj }}{\text { opp }}$

Fundamental Identities
$\csc \theta=\frac{1}{\sin \theta}$
$\sec \theta=\frac{1}{\cos \theta}$
$\tan \theta=\frac{\sin \theta}{\cos \theta}$
$\cot \theta=\frac{\cos \theta}{\sin \theta}$
$\cot \theta=\frac{1}{\tan \theta}$
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$1+\tan ^{2} \theta=\sec ^{2} \theta$
$1+\cot ^{2} \theta=\csc ^{2} \theta$
$\sin (-\theta)=-\sin \theta$
$\cos (-\theta)=\cos \theta$
$\tan (-\theta)=-\tan \theta$
$\sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta$
$\cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta$
$\tan \left(\frac{\pi}{2}-\theta\right)=\cot \theta$

TABLE OF INTEGRALS

Basic Forms

1. $\int u d v=u v-\int v d u$
2. $\int u^{n} d u=\frac{u^{n+1}}{n+1}+C, n \neq-1$
3. $\int \frac{d u}{u}=\ln |u|+C$
4. $\int e^{u} d u=e^{u}+C$
5. $\int a^{u} d u=\frac{a^{u}}{\ln a}+C$
6. $\int \sin u d u=-\cos u+C$
7. $\int \cos u d u=\sin u+C$
8. $\int \sec ^{2} u d u=\tan u+C$
9. $\int \csc ^{2} u d u=-\cot u+C$
10. $\int \sec u \tan u d u=\sec u+C$
11. $\int \csc u \cot u d u=-\csc u+C$
12. $\int \tan u d u=\ln |\sec u|+C$
13. $\int \cot u d u=\ln |\sin u|+C$
14. $\int \sec u d u=\ln |\sec u+\tan u|+C$
15. $\int \csc u d u=\ln |\csc u-\cot u|+C$
16. $\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=\sin ^{-1} \frac{u}{a}+C, \quad a>0$
17. $\int \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \tan ^{-1} \frac{u}{a}+C$
18. $\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=\frac{1}{a} \sec ^{-1} \frac{u}{a}+C$
19. $\int \frac{d u}{a^{2}-u^{2}}=\frac{1}{2 a} \ln \left|\frac{u+a}{u-a}\right|+C$
20. $\int \frac{d u}{u^{2}-a^{2}}=\frac{1}{2 a} \ln \left|\frac{u-a}{u+a}\right|+C$
