TI 83-84: Solving Equations By Graphing On Your Calculator

Important: Solving by graphing on your calculator gives a decimal answer, not an "exact" answer. So if the answer is really $\sqrt{2}$, the calculator will tell you that the answer is $1.414 \ldots$

Method 1: Graph each side of the equation as separate " $y=$ =" equation, look for the intersection of the graphs -- the x-coordinate of any intersection is a solution. (See Worksheet 5 for directions on finding intersections.) Make sure that you only list x-values as solutions...there were no y-values in the original equation.

Method 2: Get a zero on one side of the equation, then graph the other side on your calculator. Look for the x-intercepts -- these will be the solutions. (See Worksheet 6 for directions on finding x-intercepts.) Make sure that you only list x-values as solutions...there were no y-values in the original equation.

Here's an example using Method 1:

Solve this equation by graphing:

$$
\left|3 x-x^{2}\right|=4
$$

graph each side as a separate equation:

Find the two intersections by using $2^{\text {nd }}$ CALC intersect: $x=-1$ and $x=4$ are solutions to this equation.

Can you check that by substituting those answers for x in the equation? Try it!
$\left|3 x-x^{2}\right|=4$
let $x=-1$
$\left|3(-1)-(-1)^{2}\right| \stackrel{?}{=} 4$
$\left|3 x-x^{2}\right|=4$
let $x=4$
$\left|3(4)-(4)^{2}\right| \stackrel{?}{=} 4$

Practice for Solving Equations By Graphing

- Solve each equation by graphing both sides of the equation as separate functions on your calculator. ZOOM Standard works well.
- Sketch the graphs below, then ask your calculator for the exact intersections, using $2^{\text {nd }}$ CALC intersect.
- Remember that we only want the x-values, because we're solving equations with just x !
- Answers are at the bottom of the page.
(1)

$$
x^{2}=x+6
$$

(2) $\quad|x+2|=3$

(3) $\sqrt{x+7}=2$

