TI 83/84: Calculator Pictures: The Smiley Face Equations

Suppose we wanted to make a simple Smiley face on our calculators

Let's imagine that same Smiley face placed on the x-y coordinate plane:

Set your calculator to this window so that circles look like circles:

Right Eye: Hmmmm..... How about a circle of radius 1, with the center at (3,4)?

formula:
$$(x-h)^2 + (y-k)^2$$

 $(x-h)^2 + (y-k)^2 = r^2$ gives center (h,k), radius r.

$$(x-3)^2 + (y-4)^2 = 1^2$$

(.....fill it in yourself!)

$$\frac{(x-3)^{2} + (y-4)^{2} = 1}{-(x-3)^{2}}$$

$$-(x-3)^{2} + (y-4)^{2} = 1$$

$$-(x-3)^{2}$$

 $y - 4 = \pm \sqrt{1 - (x - 3)^{2}} + 4$ $y = \pm \sqrt{1 - (x - 3)^{2}} + 4$ $(62 y - 4 \pm \sqrt{1 - (x - 3)^{2}})$

so:
$$y = \pm \sqrt{1 - (x - 3)^2} + 4$$

So, to enter it in the calculator, use:

$$y_1 = \sqrt{(1 - (x - 3)^2) + 4}$$

 $y_2 = -\sqrt{(1 - (x - 3)^2) + 4}$

Left Eye: Should be the same as the right eye, but with the center at (-3,4).

$$y_3 = \sqrt{(1 - (x + 3)^2) + 4}$$

 $y_4 = -\sqrt{(1 - (x + 3)^2) + 4}$

Why? Figure out the details!

$$(x-h)^{2} + (y-k)^{2} = r^{2}$$

$$(x+3)^{2} + (y-4)^{2} = I^{2}$$

$$-(x+3)^{2}$$

$$-(x+3)^{2}$$

$$-(x+3)^{2}$$

$$y-4 = \pm \sqrt{1-(x+3)^{2}}$$

$$+4$$

y=4± \(1-(x+3)^2)

The negative half of a circle centered at the origin, of radius 5. Smile:

So, to enter it in the calculator, use:

$$y_5 = -\sqrt{(25 - x^2)}$$

Why? Figure out the details!

ure out the details!
$$(x-h)^{2} + (y-k)^{2} = r^{2} \quad center = (0,0)$$

$$(x-0)^{2} + (y-0)^{2} = 5^{2}$$

$$x^{2} + y^{2} = 25$$

$$-x^{2}$$

$$\sqrt{y^{2}} = \sqrt{25 - x^{2}}$$

BUT, we only want the bottom half of the circle, so...

Now, to make it look extra good:

Use 2nd FORMAT and choose AxesOff.

If you want to graph just PART of an equation for your circles project (optional)

Example: to graph y = x+1 but only for x < 2 on your calculator,

use
$$y_1 = (x+1)/(x < 2)$$

aka
$$y = \frac{(x+1)}{(x+2)}$$

Why does this work?

When the calculator does any inequality test, it returns a one (1) if the statement is true, and a zero (0) if the statement is false.

So, when x is less than 2, the equation works out to:

$$y_1 = (x+1)/(x < 2)$$

 $y_1 = (x+1)/(1)$

$$y_1 = (x + 1) / (1)$$

 $y_1 = (x + 1)$

But when x is NOT less than 2, the equation ends up trying to divide by zero, which is undefined -- so the calculator doesn't graph anything.

$$y_1 = (x+1)/(x<2)$$

$$y_1 = (x+1)/(0)$$

So, for y_1 in the above example, when x < 2, you just get the graph of y = x + 1. However, when x is <u>not</u> less than 2 (when $x \ge 2$), the function is undefined, and the calculator graphs nothing.

Where do you find the inequality signs on your calculator? Press 2nd, then TEST, which is above the MATH key:

What if you want to limit both sides of your graph? Do this:

 $y_1 = (graph eq'n)/((x > 2)(x < 5))$

This would graph your equation, only between x = 2 and x = 5.

For example:

y= (x+1)/((x>z)(x<5))

graphs The line y= x+1, but

only between x= 2 and x=5.

Page 3 of 3